Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analysis of Length Normalization in End-to-End Speaker Verification System (1806.03209v2)

Published 8 Jun 2018 in eess.AS and cs.SD

Abstract: The classical i-vectors and the latest end-to-end deep speaker embeddings are the two representative categories of utterance-level representations in automatic speaker verification systems. Traditionally, once i-vectors or deep speaker embeddings are extracted, we rely on an extra length normalization step to normalize the representations into unit-length hyperspace before back-end modeling. In this paper, we explore how the neural network learns length-normalized deep speaker embeddings in an end-to-end manner. To this end, we add a length normalization layer followed by a scale layer before the output layer of the common classification network. We conducted experiments on the verification task of the Voxceleb1 dataset. The results show that integrating this simple step in the end-to-end training pipeline significantly boosts the performance of speaker verification. In the testing stage of our L2-normalized end-to-end system, a simple inner-product can achieve the state-of-the-art.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.