Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Monge blunts Bayes: Hardness Results for Adversarial Training (1806.02977v4)

Published 8 Jun 2018 in cs.LG and stat.ML

Abstract: The last few years have seen a staggering number of empirical studies of the robustness of neural networks in a model of adversarial perturbations of their inputs. Most rely on an adversary which carries out local modifications within prescribed balls. None however has so far questioned the broader picture: how to frame a resource-bounded adversary so that it can be severely detrimental to learning, a non-trivial problem which entails at a minimum the choice of loss and classifiers. We suggest a formal answer for losses that satisfy the minimal statistical requirement of being proper. We pin down a simple sufficient property for any given class of adversaries to be detrimental to learning, involving a central measure of "harmfulness" which generalizes the well-known class of integral probability metrics. A key feature of our result is that it holds for all proper losses, and for a popular subset of these, the optimisation of this central measure appears to be independent of the loss. When classifiers are Lipschitz -- a now popular approach in adversarial training --, this optimisation resorts to optimal transport to make a low-budget compression of class marginals. Toy experiments reveal a finding recently separately observed: training against a sufficiently budgeted adversary of this kind improves generalization.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.