Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Adversarial Risk (1806.02924v5)

Published 7 Jun 2018 in stat.ML and cs.LG

Abstract: Recent works on adversarial perturbations show that there is an inherent trade-off between standard test accuracy and adversarial accuracy. Specifically, they show that no classifier can simultaneously be robust to adversarial perturbations and achieve high standard test accuracy. However, this is contrary to the standard notion that on tasks such as image classification, humans are robust classifiers with low error rate. In this work, we show that the main reason behind this confusion is the inexact definition of adversarial perturbation that is used in the literature. To fix this issue, we propose a slight, yet important modification to the existing definition of adversarial perturbation. Based on the modified definition, we show that there is no trade-off between adversarial and standard accuracies; there exist classifiers that are robust and achieve high standard accuracy. We further study several properties of this new definition of adversarial risk and its relation to the existing definition.

Citations (19)

Summary

We haven't generated a summary for this paper yet.