Papers
Topics
Authors
Recent
2000 character limit reached

Direct Optimization through $\arg \max$ for Discrete Variational Auto-Encoder (1806.02867v5)

Published 7 Jun 2018 in cs.LG and stat.ML

Abstract: Reparameterization of variational auto-encoders with continuous random variables is an effective method for reducing the variance of their gradient estimates. In the discrete case, one can perform reparametrization using the Gumbel-Max trick, but the resulting objective relies on an $\arg \max$ operation and is non-differentiable. In contrast to previous works which resort to softmax-based relaxations, we propose to optimize it directly by applying the direct loss minimization approach. Our proposal extends naturally to structured discrete latent variable models when evaluating the $\arg \max$ operation is tractable. We demonstrate empirically the effectiveness of the direct loss minimization technique in variational autoencoders with both unstructured and structured discrete latent variables.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.