Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unbiased Estimation of the Value of an Optimized Policy (1806.02794v1)

Published 7 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Randomized trials, also known as A/B tests, are used to select between two policies: a control and a treatment. Given a corresponding set of features, we can ideally learn an optimized policy P that maps the A/B test data features to action space and optimizes reward. However, although A/B testing provides an unbiased estimator for the value of deploying B (i.e., switching from policy A to B), direct application of those samples to learn the the optimized policy P generally does not provide an unbiased estimator of the value of P as the samples were observed when constructing P. In situations where the cost and risks associated of deploying a policy are high, such an unbiased estimator is highly desirable. We present a procedure for learning optimized policies and getting unbiased estimates for the value of deploying them. We wrap any policy learning procedure with a bagging process and obtain out-of-bag policy inclusion decisions for each sample. We then prove that inverse-propensity-weighting effect estimator is unbiased when applied to the optimized subset. Likewise, we apply the same idea to obtain out-of-bag unbiased per-sample value estimate of the measurement that is independent of the randomized treatment, and use these estimates to build an unbiased doubly-robust effect estimator. Lastly, we empirically shown that even when the average treatment effect is negative we can find a positive optimized policy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.