Papers
Topics
Authors
Recent
2000 character limit reached

There goes Wally: Anonymously sharing your location gives you away (1806.02701v2)

Published 7 Jun 2018 in cs.CR

Abstract: With current technology, a number of entities have access to user mobility traces at different levels of spatio-temporal granularity. At the same time, users frequently reveal their location through different means, including geo-tagged social media posts and mobile app usage. Such leaks are often bound to a pseudonym or a fake identity in an attempt to preserve one's privacy. In this work, we investigate how large-scale mobility traces can de-anonymize anonymous location leaks. By mining the country-wide mobility traces of tens of millions of users, we aim to understand how many location leaks are required to uniquely match a trace, how spatio-temporal obfuscation decreases the matching quality, and how the location popularity and time of the leak influence de-anonymization. We also study the mobility characteristics of those individuals whose anonymous leaks are more prone to identification. Finally, by extending our matching methodology to full traces, we show how large-scale human mobility is highly unique. Our quantitative results have implications for the privacy of users' traces, and may serve as a guideline for future policies regarding the management and publication of mobility data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.