Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Including Uncertainty when Learning from Human Corrections (1806.02454v2)

Published 6 Jun 2018 in cs.RO

Abstract: It is difficult for humans to efficiently teach robots how to correctly perform a task. One intuitive solution is for the robot to iteratively learn the human's preferences from corrections, where the human improves the robot's current behavior at each iteration. When learning from corrections, we argue that while the robot should estimate the most likely human preferences, it should also know what it does not know, and integrate this uncertainty as it makes decisions. We advance the state-of-the-art by introducing a Kalman filter for learning from corrections: this approach obtains the uncertainty of the estimated human preferences. Next, we demonstrate how the estimate uncertainty can be leveraged for active learning and risk-sensitive deployment. Our results indicate that obtaining and leveraging uncertainty leads to faster learning from human corrections.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.