Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Human-like generalization in a machine through predicate learning (1806.01709v3)

Published 5 Jun 2018 in cs.AI

Abstract: Humans readily generalize, applying prior knowledge to novel situations and stimuli. Advances in machine learning and artificial intelligence have begun to approximate and even surpass human performance, but machine systems reliably struggle to generalize information to untrained situations. We describe a neural network model that is trained to play one video game (Breakout) and demonstrates one-shot generalization to a new game (Pong). The model generalizes by learning representations that are functionally and formally symbolic from training data, without feedback, and without requiring that structured representations be specified a priori. The model uses unsupervised comparison to discover which characteristics of the input are invariant, and to learn relational predicates; it then applies these predicates to arguments in a symbolic fashion, using oscillatory regularities in network firing to dynamically bind predicates to arguments. We argue that models of human cognition must account for far-reaching and flexible generalization, and that in order to do so, models must be able to discover symbolic representations from unstructured data, a process we call predicate learning. Only then can models begin to adequately explain where human-like representations come from, why human cognition is the way it is, and why it continues to differ from machine intelligence in crucial ways.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube