Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Alchemist: An Apache Spark <=> MPI Interface (1806.01270v1)

Published 3 Jun 2018 in cs.DC, cs.DB, physics.data-an, and stat.CO

Abstract: The Apache Spark framework for distributed computation is popular in the data analytics community due to its ease of use, but its MapReduce-style programming model can incur significant overheads when performing computations that do not map directly onto this model. One way to mitigate these costs is to off-load computations onto MPI codes. In recent work, we introduced Alchemist, a system for the analysis of large-scale data sets. Alchemist calls MPI-based libraries from within Spark applications, and it has minimal coding, communication, and memory overheads. In particular, Alchemist allows users to retain the productivity benefits of working within the Spark software ecosystem without sacrificing performance efficiency in linear algebra, machine learning, and other related computations. In this paper, we discuss the motivation behind the development of Alchemist, and we provide a detailed overview its design and usage. We also demonstrate the efficiency of our approach on medium-to-large data sets, using some standard linear algebra operations, namely matrix multiplication and the truncated singular value decomposition of a dense matrix, and we compare the performance of Spark with that of Spark+Alchemist. These computations are run on the NERSC supercomputer Cori Phase 1, a Cray XC40.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.