Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Deep Multi-Structural Shape Analysis: Application to Neuroanatomy (1806.01069v1)

Published 4 Jun 2018 in cs.CV

Abstract: We propose a deep neural network for supervised learning on neuroanatomical shapes. The network directly operates on raw point clouds without the need for mesh processing or the identification of point correspondences, as spatial transformer networks map the data to a canonical space. Instead of relying on hand-crafted shape descriptors, an optimal representation is learned in the end-to-end training stage of the network. The proposed network consists of multiple branches, so that features for multiple structures are learned simultaneously. We demonstrate the performance of our method on two applications: (i) the prediction of Alzheimer's disease and mild cognitive impairment and (ii) the regression of the brain age. Finally, we visualize the important parts of the anatomy for the prediction by adapting the occlusion method to point clouds.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.