Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Training deep learning based image denoisers from undersampled measurements without ground truth and without image prior (1806.00961v2)

Published 4 Jun 2018 in cs.CV

Abstract: Compressive sensing is a method to recover the original image from undersampled measurements. In order to overcome the ill-posedness of this inverse problem, image priors are used such as sparsity in the wavelet domain, minimum total-variation, or self-similarity. Recently, deep learning based compressive image recovery methods have been proposed and have yielded state-of-the-art performances. They used deep learning based data-driven approaches instead of hand-crafted image priors to solve the ill-posed inverse problem with undersampled data. Ironically, training deep neural networks for them requires "clean" ground truth images, but obtaining the best quality images from undersampled data requires well-trained deep neural networks. To resolve this dilemma, we propose novel methods based on two well-grounded theories: denoiser-approximate message passing and Stein's unbiased risk estimator. Our proposed methods were able to train deep learning based image denoisers from undersampled measurements without ground truth images and without image priors, and to recover images with state-of-the-art qualities from undersampled data. We evaluated our methods for various compressive sensing recovery problems with Gaussian random, coded diffraction pattern, and compressive sensing MRI measurement matrices. Our methods yielded state-of-the-art performances for all cases without ground truth images and without image priors. They also yielded comparable performances to the methods with ground truth data.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube