Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Training deep learning based image denoisers from undersampled measurements without ground truth and without image prior (1806.00961v2)

Published 4 Jun 2018 in cs.CV

Abstract: Compressive sensing is a method to recover the original image from undersampled measurements. In order to overcome the ill-posedness of this inverse problem, image priors are used such as sparsity in the wavelet domain, minimum total-variation, or self-similarity. Recently, deep learning based compressive image recovery methods have been proposed and have yielded state-of-the-art performances. They used deep learning based data-driven approaches instead of hand-crafted image priors to solve the ill-posed inverse problem with undersampled data. Ironically, training deep neural networks for them requires "clean" ground truth images, but obtaining the best quality images from undersampled data requires well-trained deep neural networks. To resolve this dilemma, we propose novel methods based on two well-grounded theories: denoiser-approximate message passing and Stein's unbiased risk estimator. Our proposed methods were able to train deep learning based image denoisers from undersampled measurements without ground truth images and without image priors, and to recover images with state-of-the-art qualities from undersampled data. We evaluated our methods for various compressive sensing recovery problems with Gaussian random, coded diffraction pattern, and compressive sensing MRI measurement matrices. Our methods yielded state-of-the-art performances for all cases without ground truth images and without image priors. They also yielded comparable performances to the methods with ground truth data.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.