Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Aggressive Genetic Programming Approach for Searching Neural Network Structure Under Computational Constraints (1806.00851v1)

Published 3 Jun 2018 in cs.NE

Abstract: Recently, there emerged revived interests of designing automatic programs (e.g., using genetic/evolutionary algorithms) to optimize the structure of Convolutional Neural Networks (CNNs) for a specific task. The challenge in designing such programs lies in how to balance between large search space of the network structures and high computational costs. Existing works either impose strong restrictions on the search space or use enormous computing resources. In this paper, we study how to design a genetic programming approach for optimizing the structure of a CNN for a given task under limited computational resources yet without imposing strong restrictions on the search space. To reduce the computational costs, we propose two general strategies that are observed to be helpful: (i) aggressively selecting strongest individuals for survival and reproduction, and killing weaker individuals at a very early age; (ii) increasing mutation frequency to encourage diversity and faster evolution. The combined strategy with additional optimization techniques allows us to explore a large search space but with affordable computational costs. Our results on standard benchmark datasets (MNIST, SVHN, CIFAR-10, CIFAR-100) are competitive to similar approaches with significantly reduced computational costs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.