Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Variable Selection for Nonparametric Learning with Power Series Kernels (1806.00569v2)

Published 2 Jun 2018 in stat.ML and cs.LG

Abstract: In this paper, we propose a variable selection method for general nonparametric kernel-based estimation. The proposed method consists of two-stage estimation: (1) construct a consistent estimator of the target function, (2) approximate the estimator using a few variables by l1-type penalized estimation. We see that the proposed method can be applied to various kernel nonparametric estimation such as kernel ridge regression, kernel-based density and density-ratio estimation. We prove that the proposed method has the property of the variable selection consistency when the power series kernel is used. This result is regarded as an extension of the variable selection consistency for the non-negative garrote to the kernel-based estimators. Several experiments including simulation studies and real data applications show the effectiveness of the proposed method.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.