Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Selection for Nonparametric Learning with Power Series Kernels (1806.00569v2)

Published 2 Jun 2018 in stat.ML and cs.LG

Abstract: In this paper, we propose a variable selection method for general nonparametric kernel-based estimation. The proposed method consists of two-stage estimation: (1) construct a consistent estimator of the target function, (2) approximate the estimator using a few variables by l1-type penalized estimation. We see that the proposed method can be applied to various kernel nonparametric estimation such as kernel ridge regression, kernel-based density and density-ratio estimation. We prove that the proposed method has the property of the variable selection consistency when the power series kernel is used. This result is regarded as an extension of the variable selection consistency for the non-negative garrote to the kernel-based estimators. Several experiments including simulation studies and real data applications show the effectiveness of the proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.