Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Provably convergent acceleration in factored gradient descent with applications in matrix sensing (1806.00534v5)

Published 1 Jun 2018 in cs.LG, cs.DS, cs.IT, math.IT, math.OC, and stat.ML

Abstract: We present theoretical results on the convergence of \emph{non-convex} accelerated gradient descent in matrix factorization models with $\ell_2$-norm loss. The purpose of this work is to study the effects of acceleration in non-convex settings, where provable convergence with acceleration should not be considered a \emph{de facto} property. The technique is applied to matrix sensing problems, for the estimation of a rank $r$ optimal solution $X\star \in \mathbb{R}{n \times n}$. Our contributions can be summarized as follows. $i)$ We show that acceleration in factored gradient descent converges at a linear rate; this fact is novel for non-convex matrix factorization settings, under common assumptions. $ii)$ Our proof technique requires the acceleration parameter to be carefully selected, based on the properties of the problem, such as the condition number of $X\star$ and the condition number of objective function. $iii)$ Currently, our proof leads to the same dependence on the condition number(s) in the contraction parameter, similar to recent results on non-accelerated algorithms. $iv)$ Acceleration is observed in practice, both in synthetic examples and in two real applications: neuronal multi-unit activities recovery from single electrode recordings, and quantum state tomography on quantum computing simulators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.