Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

KG^2: Learning to Reason Science Exam Questions with Contextual Knowledge Graph Embeddings (1805.12393v1)

Published 31 May 2018 in cs.LG, cs.AI, cs.CL, and stat.ML

Abstract: The AI2 Reasoning Challenge (ARC), a new benchmark dataset for question answering (QA) has been recently released. ARC only contains natural science questions authored for human exams, which are hard to answer and require advanced logic reasoning. On the ARC Challenge Set, existing state-of-the-art QA systems fail to significantly outperform random baseline, reflecting the difficult nature of this task. In this paper, we propose a novel framework for answering science exam questions, which mimics human solving process in an open-book exam. To address the reasoning challenge, we construct contextual knowledge graphs respectively for the question itself and supporting sentences. Our model learns to reason with neural embeddings of both knowledge graphs. Experiments on the ARC Challenge Set show that our model outperforms the previous state-of-the-art QA systems.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.