Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DialogWAE: Multimodal Response Generation with Conditional Wasserstein Auto-Encoder (1805.12352v2)

Published 31 May 2018 in cs.CL, cs.AI, cs.LG, and cs.NE

Abstract: Variational autoencoders~(VAEs) have shown a promise in data-driven conversation modeling. However, most VAE conversation models match the approximate posterior distribution over the latent variables to a simple prior such as standard normal distribution, thereby restricting the generated responses to a relatively simple (e.g., unimodal) scope. In this paper, we propose DialogWAE, a conditional Wasserstein autoencoder~(WAE) specially designed for dialogue modeling. Unlike VAEs that impose a simple distribution over the latent variables, DialogWAE models the distribution of data by training a GAN within the latent variable space. Specifically, our model samples from the prior and posterior distributions over the latent variables by transforming context-dependent random noise using neural networks and minimizes the Wasserstein distance between the two distributions. We further develop a Gaussian mixture prior network to enrich the latent space. Experiments on two popular datasets show that DialogWAE outperforms the state-of-the-art approaches in generating more coherent, informative and diverse responses.

Citations (128)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.