Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

QuickIM: Efficient, Accurate and Robust Influence Maximization Algorithm on Billion-Scale Networks (1805.12320v1)

Published 31 May 2018 in cs.SI and cs.DB

Abstract: The Influence Maximization (IM) problem aims at finding k seed vertices in a network, starting from which influence can be spread in the network to the maximum extent. In this paper, we propose QuickIM, the first versatile IM algorithm that attains all the desirable properties of a practically applicable IM algorithm at the same time, namely high time efficiency, good result quality, low memory footprint, and high robustness. On real-world social networks, QuickIM achieves the $\Omega(n + m)$ lower bound on time complexity and $\Omega(n)$ space complexity, where $n$ and $m$ are the number of vertices and edges in the network, respectively. Our experimental evaluation verifies the superiority of QuickIM. Firstly, QuickIM runs 1-3 orders of magnitude faster than the state-of-the-art IM algorithms. Secondly, except EasyIM, QuickIM requires 1-2 orders of magnitude less memory than the state-of-the-art algorithms. Thirdly, QuickIM always produces as good quality results as the state-of-the-art algorithms. Lastly, the time and the memory performance of QuickIM is independent of influence probabilities. On the largest network used in the experiments that contains more than 3.6 billion edges, QuickIM is able to find hundreds of influential seeds in less than 4 minutes, while all the state-of-the-art algorithms fail to terminate in an hour.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube