Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimized Participation of Multiple Fusion Functions in Consensus Creation: An Evolutionary Approach (1805.12270v1)

Published 31 May 2018 in cs.NE and cs.LG

Abstract: Recent studies show that ensemble methods enhance the stability and robustness of unsupervised learning. These approaches are successfully utilized to construct multiple clustering and combine them into a one representative consensus clustering of an improved quality. The quality of the consensus clustering is directly depended on fusion functions used in combination. In this article, the hierarchical clustering ensemble techniques are extended by introducing a new evolutionary fusion function. In the proposed method, multiple hierarchical clustering methods are generated via bagging. Thereafter, the consensus clustering is obtained using the search capability of genetic algorithm among different aggregated clustering methods made by different fusion functions. Putting some popular data sets to empirical study, the quality of the proposed method is compared with regular clustering ensembles. Experimental results demonstrate the accuracy improvement of the aggregated clustering results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.