Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tight Regret Bounds for Bayesian Optimization in One Dimension (1805.11792v3)

Published 30 May 2018 in stat.ML, cs.IT, cs.LG, math.IT, and math.OC

Abstract: We consider the problem of Bayesian optimization (BO) in one dimension, under a Gaussian process prior and Gaussian sampling noise. We provide a theoretical analysis showing that, under fairly mild technical assumptions on the kernel, the best possible cumulative regret up to time $T$ behaves as $\Omega(\sqrt{T})$ and $O(\sqrt{T\log T})$. This gives a tight characterization up to a $\sqrt{\log T}$ factor, and includes the first non-trivial lower bound for noisy BO. Our assumptions are satisfied, for example, by the squared exponential and Mat\'ern-$\nu$ kernels, with the latter requiring $\nu > 2$. Our results certify the near-optimality of existing bounds (Srinivas {\em et al.}, 2009) for the SE kernel, while proving them to be strictly suboptimal for the Mat\'ern kernel with $\nu > 2$.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)