A Fine-to-Coarse Convolutional Neural Network for 3D Human Action Recognition (1805.11790v2)
Abstract: This paper presents a new framework for human action recognition from a 3D skeleton sequence. Previous studies do not fully utilize the temporal relationships between video segments in a human action. Some studies successfully used very deep Convolutional Neural Network (CNN) models but often suffer from the data insufficiency problem. In this study, we first segment a skeleton sequence into distinct temporal segments in order to exploit the correlations between them. The temporal and spatial features of a skeleton sequence are then extracted simultaneously by utilizing a fine-to-coarse (F2C) CNN architecture optimized for human skeleton sequences. We evaluate our proposed method on NTU RGB+D and SBU Kinect Interaction dataset. It achieves 79.6% and 84.6% of accuracies on NTU RGB+D with cross-object and cross-view protocol, respectively, which are almost identical with the state-of-the-art performance. In addition, our method significantly improves the accuracy of the actions in two-person interactions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.