Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications (1805.11769v2)

Published 30 May 2018 in stat.ML, cs.LG, and cs.SI

Abstract: The von Neumann graph entropy (VNGE) facilitates measurement of information divergence and distance between graphs in a graph sequence. It has been successfully applied to various learning tasks driven by network-based data. While effective, VNGE is computationally demanding as it requires the full eigenspectrum of the graph Laplacian matrix. In this paper, we propose a new computational framework, Fast Incremental von Neumann Graph EntRopy (FINGER), which approaches VNGE with a performance guarantee. FINGER reduces the cubic complexity of VNGE to linear complexity in the number of nodes and edges, and thus enables online computation based on incremental graph changes. We also show asymptotic equivalence of FINGER to the exact VNGE, and derive its approximation error bounds. Based on FINGER, we propose efficient algorithms for computing Jensen-Shannon distance between graphs. Our experimental results on different random graph models demonstrate the computational efficiency and the asymptotic equivalence of FINGER. In addition, we apply FINGER to two real-world applications and one synthesized anomaly detection dataset, and corroborate its superior performance over seven baseline graph similarity methods.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.