Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Splitting source code identifiers using Bidirectional LSTM Recurrent Neural Network (1805.11651v2)

Published 26 May 2018 in cs.CL and cs.PL

Abstract: Programmers make rich use of natural language in the source code they write through identifiers and comments. Source code identifiers are selected from a pool of tokens which are strongly related to the meaning, naming conventions, and context. These tokens are often combined to produce more precise and obvious designations. Such multi-part identifiers count for 97% of all naming tokens in the Public Git Archive - the largest dataset of Git repositories to date. We introduce a bidirectional LSTM recurrent neural network to detect subtokens in source code identifiers. We trained that network on 41.7 million distinct splittable identifiers collected from 182,014 open source projects in Public Git Archive, and show that it outperforms several other machine learning models. The proposed network can be used to improve the upstream models which are based on source code identifiers, as well as improving developer experience allowing writing code without switching the keyboard case.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.