High Dimensional Robust Sparse Regression (1805.11643v3)
Abstract: We provide a novel -- and to the best of our knowledge, the first -- algorithm for high dimensional sparse regression with constant fraction of corruptions in explanatory and/or response variables. Our algorithm recovers the true sparse parameters with sub-linear sample complexity, in the presence of a constant fraction of arbitrary corruptions. Our main contribution is a robust variant of Iterative Hard Thresholding. Using this, we provide accurate estimators: when the covariance matrix in sparse regression is identity, our error guarantee is near information-theoretically optimal. We then deal with robust sparse regression with unknown structured covariance matrix. We propose a filtering algorithm which consists of a novel randomized outlier removal technique for robust sparse mean estimation that may be of interest in its own right: the filtering algorithm is flexible enough to deal with unknown covariance. Also, it is orderwise more efficient computationally than the ellipsoid algorithm. Using sub-linear sample complexity, our algorithm achieves the best known (and first) error guarantee. We demonstrate the effectiveness on large-scale sparse regression problems with arbitrary corruptions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.