Papers
Topics
Authors
Recent
2000 character limit reached

High Dimensional Robust Sparse Regression (1805.11643v3)

Published 29 May 2018 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We provide a novel -- and to the best of our knowledge, the first -- algorithm for high dimensional sparse regression with constant fraction of corruptions in explanatory and/or response variables. Our algorithm recovers the true sparse parameters with sub-linear sample complexity, in the presence of a constant fraction of arbitrary corruptions. Our main contribution is a robust variant of Iterative Hard Thresholding. Using this, we provide accurate estimators: when the covariance matrix in sparse regression is identity, our error guarantee is near information-theoretically optimal. We then deal with robust sparse regression with unknown structured covariance matrix. We propose a filtering algorithm which consists of a novel randomized outlier removal technique for robust sparse mean estimation that may be of interest in its own right: the filtering algorithm is flexible enough to deal with unknown covariance. Also, it is orderwise more efficient computationally than the ellipsoid algorithm. Using sub-linear sample complexity, our algorithm achieves the best known (and first) error guarantee. We demonstrate the effectiveness on large-scale sparse regression problems with arbitrary corruptions.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.