Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Capturing Variabilities from Computed Tomography Images with Generative Adversarial Networks (1805.11504v1)

Published 29 May 2018 in cs.CV, cs.LG, and stat.ML

Abstract: With the advent of Deep Learning (DL) techniques, especially Generative Adversarial Networks (GANs), data augmentation and generation are quickly evolving domains that have raised much interest recently. However, the DL techniques are data demanding and since, medical data is not easily accessible, they suffer from data insufficiency. To deal with this limitation, different data augmentation techniques are used. Here, we propose a novel unsupervised data-driven approach for data augmentation that can generate 2D Computed Tomography (CT) images using a simple GAN. The generated CT images have good global and local features of a real CT image and can be used to augment the training datasets for effective learning. In this proof-of-concept study, we show that our proposed solution using GANs is able to capture some of the global and local CT variabilities. Our network is able to generate visually realistic CT images and we aim to further enhance its output by scaling it to a higher resolution and potentially from 2D to 3D.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.