Papers
Topics
Authors
Recent
2000 character limit reached

Uniform regret bounds over $R^d$ for the sequential linear regression problem with the square loss (1805.11386v2)

Published 29 May 2018 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We consider the setting of online linear regression for arbitrary deterministic sequences, with the square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that hold uniformly over all competitor vectors. When the feature sequence is known at the beginning of the game, they provided closed-form regret bounds of $2d B2 \ln T + \mathcal{O}_T(1)$, where $T$ is the number of rounds and $B$ is a bound on the observations. Instead, we derive bounds with an optimal constant of $1$ in front of the $d B2 \ln T$ term. In the case of sequentially revealed features, we also derive an asymptotic regret bound of $d B2 \ln T$ for any individual sequence of features and bounded observations. All our algorithms are variants of the online non-linear ridge regression forecaster, either with a data-dependent regularization or with almost no regularization.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.