Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Disentangling by Partitioning: A Representation Learning Framework for Multimodal Sensory Data (1805.11264v1)

Published 29 May 2018 in stat.ML, cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Multimodal sensory data resembles the form of information perceived by humans for learning, and are easy to obtain in large quantities. Compared to unimodal data, synchronization of concepts between modalities in such data provides supervision for disentangling the underlying explanatory factors of each modality. Previous work leveraging multimodal data has mainly focused on retaining only the modality-invariant factors while discarding the rest. In this paper, we present a partitioned variational autoencoder (PVAE) and several training objectives to learn disentangled representations, which encode not only the shared factors, but also modality-dependent ones, into separate latent variables. Specifically, PVAE integrates a variational inference framework and a multimodal generative model that partitions the explanatory factors and conditions only on the relevant subset of them for generation. We evaluate our model on two parallel speech/image datasets, and demonstrate its ability to learn disentangled representations by qualitatively exploring within-modality and cross-modality conditional generation with semantics and styles specified by examples. For quantitative analysis, we evaluate the classification accuracy of automatically discovered semantic units. Our PVAE can achieve over 99% accuracy on both modalities.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.