Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Differential Entropy of Mixtures: New Bounds and Applications (1805.11257v2)

Published 29 May 2018 in cs.IT, math.IT, and math.PR

Abstract: Mixture distributions are extensively used as a modeling tool in diverse areas from machine learning to communications engineering to physics, and obtaining bounds on the entropy of probability distributions is of fundamental importance in many of these applications. This article provides sharp bounds on the entropy concavity deficit, which is the difference between the entropy of the mixture and the weighted sum of entropies of constituent components. Toward establishing lower and upper bounds on the concavity deficit, results that are of importance in their own right are obtained. In order to obtain nontrivial upper bounds, properties of the skew-divergence are developed and notions of "skew" $f$-divergences are introduced; a reverse Pinsker inequality and a bound on Jensen-Shannon divergence are obtained along the way. Complementary lower bounds are derived with special attention paid to the case that corresponds to independent summation of a continuous and a discrete random variable. Several applications of the bounds are delineated, including to mutual information of additive noise channels, thermodynamics of computation, and functional inequalities.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.