Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks (1805.11191v1)

Published 28 May 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Supervised machine learning based state-of-the-art computer vision techniques are in general data hungry and pose the challenges of not having adequate computing resources and of high costs involved in human labeling efforts. Training data subset selection and active learning techniques have been proposed as possible solutions to these challenges respectively. A special class of subset selection functions naturally model notions of diversity, coverage and representation and they can be used to eliminate redundancy and thus lend themselves well for training data subset selection. They can also help improve the efficiency of active learning in further reducing human labeling efforts by selecting a subset of the examples obtained using the conventional uncertainty sampling based techniques. In this work we empirically demonstrate the effectiveness of two diversity models, namely the Facility-Location and Disparity-Min models for training-data subset selection and reducing labeling effort. We do this for a variety of computer vision tasks including Gender Recognition, Scene Recognition and Object Recognition. Our results show that subset selection done in the right way can add 2-3% in accuracy on existing baselines, particularly in the case of less training data. This allows the training of complex machine learning models (like Convolutional Neural Networks) with much less training data while incurring minimal performance loss.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube