Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Strongly polynomial efficient approximation scheme for segmentation (1805.11170v2)

Published 28 May 2018 in cs.DS and cs.AI

Abstract: Partitioning a sequence of length $n$ into $k$ coherent segments (Seg) is one of the classic optimization problems. As long as the optimization criterion is additive, Seg can be solved exactly in $O(n2k)$ time using a classic dynamic program. Due to the quadratic term, computing the exact segmentation may be too expensive for long sequences, which has led to development of approximate solutions. We consider an existing estimation scheme that computes $(1 + \epsilon)$ approximation in polylogarithmic time. We augment this algorithm, making it strongly polynomial. We do this by first solving a slightly different segmentation problem (MaxSeg), where the quality of the segmentation is the maximum penalty of an individual segment. By using this solution to initialize the estimation scheme, we are able to obtain a strongly polynomial algorithm. In addition, we consider a cumulative version of Seg, where we are asked to discover the optimal segmentation for each prefix of the input sequence. We propose a strongly polynomial algorithm that yields $(1 + \epsilon)$ approximation in $O(nk2 / \epsilon)$ time. Finally, we consider a cumulative version of MaxSeg, and show that we can solve the problem in $O(nk \log k)$ time.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.