Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Euler methods for stochastic systems with non-globally Lipschitz coefficients (1805.11137v4)

Published 28 May 2018 in math.NA and cs.NA

Abstract: We present strongly convergent explicit and semi-implicit adaptive numerical schemes for systems of stiff stochastic differential equations (SDEs) where both the drift and diffusion are non-globally Lipschitz continuous. This stiffness may originate either from a linear operator in the drift, or from a perturbation of the nonlinear structures under discretisation, or both. Typical applications arise from the space discretisation of an SPDE, stochastic volatility models in finance, or certain ecological models. We prove that a timetepping strategy that adapts the stepsize based on the drift alone is sufficient to control growth and to obtain strong convergence with polynomial order. The order of strong convergence of our scheme is $(1-\varepsilon)/2$, for $\varepsilon\in(0,1)$, where $\varepsilon$ becomes arbitrarily small as the number of available finite moments for solutions of the SDE increases. Numerically, we compare the adaptive semi-implicit method to a fully drift implicit method, three tamed type methods and a truncated method. Our numerical results show that the adaptive semi-implicit method is well suited as a general purpose solver, is more robust than the explicit time stepping methods and more efficient than the drift implicit method.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.