Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning in Ice Hockey for Context-Aware Player Evaluation (1805.11088v3)

Published 26 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: A variety of machine learning models have been proposed to assess the performance of players in professional sports. However, they have only a limited ability to model how player performance depends on the game context. This paper proposes a new approach to capturing game context: we apply Deep Reinforcement Learning (DRL) to learn an action-value Q function from 3M play-by-play events in the National Hockey League (NHL). The neural network representation integrates both continuous context signals and game history, using a possession-based LSTM. The learned Q-function is used to value players' actions under different game contexts. To assess a player's overall performance, we introduce a novel Game Impact Metric (GIM) that aggregates the values of the player's actions. Empirical Evaluation shows GIM is consistent throughout a play season, and correlates highly with standard success measures and future salary.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.