Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A Poisson Gamma Probabilistic Model for Latent Node-group Memberships in Dynamic Networks (1805.11054v1)

Published 28 May 2018 in cs.SI

Abstract: We present a probabilistic model for learning from dynamic relational data, wherein the observed interactions among networked nodes are modeled via the Bernoulli Poisson link function, and the underlying network structure are characterized by nonnegative latent node-group memberships, which are assumed to be gamma distributed. The latent memberships evolve according to Markov processes. The optimal number of latent groups can be determined by data itself. The computational complexity of our method scales with the number of non-zero links, which makes it scalable to large sparse dynamic relational data. We present batch and online Gibbs sampling algorithms to perform model inference. Finally, we demonstrate the model's performance on both synthetic and real-world datasets compared to state-of-the-art methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.