Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Resource Provisioning in Vehicular Cloud (1805.11000v1)

Published 28 May 2018 in cs.NI

Abstract: This article presents a concise view of vehicular clouds that incorporates various vehicular cloud models, which have been proposed, to date. Essentially, they all extend the traditional cloud and its utility computing functionalities across the entities in the vehicular ad hoc network (VANET). These entities include fixed road-side units (RSUs), on-board units (OBUs) embedded in the vehicle and personal smart devices of the driver and passengers. Cumulatively, these entities yield abundant processing, storage, sensing and communication resources. However, vehicular clouds require novel resource provisioning techniques, which can address the intrinsic challenges of (i) dynamic demands for the resources and (ii) stringent QoS requirements. In this article, we show the benefits of reinforcement learning based techniques for resource provisioning in the vehicular cloud. The learning techniques can perceive long term benefits and are ideal for minimizing the overhead of resource provisioning for vehicular clouds.

Citations (88)

Summary

We haven't generated a summary for this paper yet.