Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reinforcement Learning for Resource Provisioning in Vehicular Cloud (1805.11000v1)

Published 28 May 2018 in cs.NI

Abstract: This article presents a concise view of vehicular clouds that incorporates various vehicular cloud models, which have been proposed, to date. Essentially, they all extend the traditional cloud and its utility computing functionalities across the entities in the vehicular ad hoc network (VANET). These entities include fixed road-side units (RSUs), on-board units (OBUs) embedded in the vehicle and personal smart devices of the driver and passengers. Cumulatively, these entities yield abundant processing, storage, sensing and communication resources. However, vehicular clouds require novel resource provisioning techniques, which can address the intrinsic challenges of (i) dynamic demands for the resources and (ii) stringent QoS requirements. In this article, we show the benefits of reinforcement learning based techniques for resource provisioning in the vehicular cloud. The learning techniques can perceive long term benefits and are ideal for minimizing the overhead of resource provisioning for vehicular clouds.

Citations (88)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.