Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Temporal Event Knowledge Acquisition via Identifying Narratives (1805.10956v1)

Published 28 May 2018 in cs.CL and cs.AI

Abstract: Inspired by the double temporality characteristic of narrative texts, we propose a novel approach for acquiring rich temporal "before/after" event knowledge across sentences in narrative stories. The double temporality states that a narrative story often describes a sequence of events following the chronological order and therefore, the temporal order of events matches with their textual order. We explored narratology principles and built a weakly supervised approach that identifies 287k narrative paragraphs from three large text corpora. We then extracted rich temporal event knowledge from these narrative paragraphs. Such event knowledge is shown useful to improve temporal relation classification and outperform several recent neural network models on the narrative cloze task.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.