Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Network Sparsification with Dependent Variational Beta-Bernoulli Dropout (1805.10896v3)

Published 28 May 2018 in stat.ML and cs.LG

Abstract: While variational dropout approaches have been shown to be effective for network sparsification, they are still suboptimal in the sense that they set the dropout rate for each neuron without consideration of the input data. With such input-independent dropout, each neuron is evolved to be generic across inputs, which makes it difficult to sparsify networks without accuracy loss. To overcome this limitation, we propose adaptive variational dropout whose probabilities are drawn from sparsity-inducing beta Bernoulli prior. It allows each neuron to be evolved either to be generic or specific for certain inputs, or dropped altogether. Such input-adaptive sparsity-inducing dropout allows the resulting network to tolerate larger degree of sparsity without losing its expressive power by removing redundancies among features. We validate our dependent variational beta-Bernoulli dropout on multiple public datasets, on which it obtains significantly more compact networks than baseline methods, with consistent accuracy improvements over the base networks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.