Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Deep Discriminative Latent Space for Clustering (1805.10795v1)

Published 28 May 2018 in cs.CV, cs.AI, cs.LG, and cs.NE

Abstract: Clustering is one of the most fundamental tasks in data analysis and machine learning. It is central to many data-driven applications that aim to separate the data into groups with similar patterns. Moreover, clustering is a complex procedure that is affected significantly by the choice of the data representation method. Recent research has demonstrated encouraging clustering results by learning effectively these representations. In most of these works a deep auto-encoder is initially pre-trained to minimize a reconstruction loss, and then jointly optimized with clustering centroids in order to improve the clustering objective. Those works focus mainly on the clustering phase of the procedure, while not utilizing the potential benefit out of the initial phase. In this paper we propose to optimize an auto-encoder with respect to a discriminative pairwise loss function during the auto-encoder pre-training phase. We demonstrate the high accuracy obtained by the proposed method as well as its rapid convergence (e.g. reaching above 92% accuracy on MNIST during the pre-training phase, in less than 50 epochs), even with small networks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.