Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Clustering by latent dimensions (1805.10759v1)

Published 28 May 2018 in stat.ML and cs.LG

Abstract: This paper introduces a new clustering technique, called {\em dimensional clustering}, which clusters each data point by its latent {\em pointwise dimension}, which is a measure of the dimensionality of the data set local to that point. Pointwise dimension is invariant under a broad class of transformations. As a result, dimensional clustering can be usefully applied to a wide range of datasets. Concretely, we present a statistical model which estimates the pointwise dimension of a dataset around the points in that dataset using the distance of each point from its $n{\text{th}}$ nearest neighbor. We demonstrate the applicability of our technique to the analysis of dynamical systems, images, and complex human movements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube