Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Discriminator Feature-based Inference by Recycling the Discriminator of GANs (1805.10717v2)

Published 28 May 2018 in cs.CV

Abstract: Generative adversarial networks (GANs)successfully generate high quality data by learning amapping from a latent vector to the data. Various studies assert that the latent space of a GAN is semanticallymeaningful and can be utilized for advanced data analysis and manipulation. To analyze the real data in thelatent space of a GAN, it is necessary to build an inference mapping from the data to the latent vector. Thispaper proposes an effective algorithm to accurately infer the latent vector by utilizing GAN discriminator features. Our primary goal is to increase inference mappingaccuracy with minimal training overhead. Furthermore,using the proposed algorithm, we suggest a conditionalimage generation algorithm, namely a spatially conditioned GAN. Extensive evaluations confirmed that theproposed inference algorithm achieved more semantically accurate inference mapping than existing methodsand can be successfully applied to advanced conditionalimage generation tasks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.