Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Toward Super-Polynomial Size Lower Bounds for Depth-Two Threshold Circuits (1805.10698v1)

Published 27 May 2018 in cs.CC

Abstract: Proving super-polynomial size lower bounds for $\textsf{TC}0$, the class of constant-depth, polynomial-size circuits of Majority gates, is a notorious open problem in complexity theory. A major frontier is to prove that $\textsf{NEXP}$ does not have poly-size $\textsf{THR} \circ \textsf{THR}$ circuit (depth-two circuits with linear threshold gates). In recent years, R.~Williams proposed a program to prove circuit lower bounds via improved algorithms. In this paper, following Williams' framework, we show that the above frontier question can be resolved by devising slightly faster algorithms for several fundamental problems: 1. Shaving Logs for $\textsf{$\ell_2$-Furthest-Pair}$. An $n2 \textrm{poly}(d) / \log{\omega(1)} n$ time algorithm for $\textsf{$\ell_2$-Furthest-Pair}$ in $\mathbb{R}d$ for polylogarithmic $d$ implies $\textsf{NEXP}$ has no polynomial size $\textsf{THR} \circ \textsf{THR}$ circuits. The same holds for Hopcroft's problem, $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$ and Integer $\textsf{Max-IP}$. 2. Shaving Logs for Approximate $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$. An $n2 \textrm(d) / \log{\omega(1)} n$ time algorithm for $(1+1/\log{\omega(1)} n)$-approximation to $\textsf{Bichrom.-$\ell_2$-Closest-Pair}$ or $\textsf{Bichrom.-$\ell_1$-Closest-Pair}$ for polylogarithmic $d$ implies $\textsf{NEXP}$ has no polynomial size $\textsf{SYM}\circ\textsf{THR}$ circuits. 3. Shaving Logs for Modest Dimension Boolean $\textsf{Max-IP}$. An $n2 / \log{\omega(1)} n$ time algorithm for Bichromatic Maximum Inner Product with vector dimension $d = n\epsilon$ for any small constant $\epsilon$ would imply $\textsf{NEXP}$ has no polynomial size $\textsf{THR} \circ \textsf{THR}$ circuits. Note there is an $n2\textrm{polylog}(n)$ time algorithm via fast rectangle matrix multiplication. Our results build on two structure lemmas for threshold circuits.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)