Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

From Knowledge Graph Embedding to Ontology Embedding? An Analysis of the Compatibility between Vector Space Representations and Rules (1805.10461v3)

Published 26 May 2018 in cs.AI

Abstract: Recent years have witnessed the successful application of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. However, it is not yet well-understood to what extent ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a general framework based on a view of relations as regions, which allows us to study the compatibility between ontological knowledge and different types of vector space embeddings. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding methods are not capable of modelling even very simple types of rules, which in particular also means that they are not able to learn the type of dependencies captured by such rules. Second, we study a model in which relations are modelled as convex regions. We show particular that ontologies which are expressed using so-called quasi-chained existential rules can be exactly represented using convex regions, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.