Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gradient Coding via the Stochastic Block Model (1805.10378v1)

Published 25 May 2018 in stat.ML, cs.DC, cs.IT, cs.LG, math.IT, and stat.CO

Abstract: Gradient descent and its many variants, including mini-batch stochastic gradient descent, form the algorithmic foundation of modern large-scale machine learning. Due to the size and scale of modern data, gradient computations are often distributed across multiple compute nodes. Unfortunately, such distributed implementations can face significant delays caused by straggler nodes, i.e., nodes that are much slower than average. Gradient coding is a new technique for mitigating the effect of stragglers via algorithmic redundancy. While effective, previously proposed gradient codes can be computationally expensive to construct, inaccurate, or susceptible to adversarial stragglers. In this work, we present the stochastic block code (SBC), a gradient code based on the stochastic block model. We show that SBCs are efficient, accurate, and that under certain settings, adversarial straggler selection becomes as hard as detecting a community structure in the multiple community, block stochastic graph model.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube