Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ergodic Inference: Accelerate Convergence by Optimisation (1805.10377v4)

Published 25 May 2018 in cs.LG and stat.ML

Abstract: Statistical inference methods are fundamentally important in machine learning. Most state-of-the-art inference algorithms are variants of Markov chain Monte Carlo (MCMC) or variational inference (VI). However, both methods struggle with limitations in practice: MCMC methods can be computationally demanding; VI methods may have large bias. In this work, we aim to improve upon MCMC and VI by a novel hybrid method based on the idea of reducing simulation bias of finite-length MCMC chains using gradient-based optimisation. The proposed method can generate low-biased samples by increasing the length of MCMC simulation and optimising the MCMC hyper-parameters, which offers attractive balance between approximation bias and computational efficiency. We show that our method produces promising results on popular benchmarks when compared to recent hybrid methods of MCMC and VI.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.