Emergent Mind

Stable Recurrent Models

(1805.10369)
Published May 25, 2018 in cs.LG and stat.ML

Abstract

Stability is a fundamental property of dynamical systems, yet to this date it has had little bearing on the practice of recurrent neural networks. In this work, we conduct a thorough investigation of stable recurrent models. Theoretically, we prove stable recurrent neural networks are well approximated by feed-forward networks for the purpose of both inference and training by gradient descent. Empirically, we demonstrate stable recurrent models often perform as well as their unstable counterparts on benchmark sequence tasks. Taken together, these findings shed light on the effective power of recurrent networks and suggest much of sequence learning happens, or can be made to happen, in the stable regime. Moreover, our results help to explain why in many cases practitioners succeed in replacing recurrent models by feed-forward models.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.