Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Guaranteed Simultaneous Asymmetric Tensor Decomposition via Orthogonalized Alternating Least Squares (1805.10348v2)

Published 25 May 2018 in stat.ML and cs.LG

Abstract: Tensor CANDECOMP/PARAFAC (CP) decomposition is an important tool that solves a wide class of machine learning problems. Existing popular approaches recover components one by one, not necessarily in the order of larger components first. Recently developed simultaneous power method obtains only a high probability recovery of top $r$ components even when the observed tensor is noiseless. We propose a Slicing Initialized Alternating Subspace Iteration (s-ASI) method that is guaranteed to recover top $r$ components ($\epsilon$-close) simultaneously for (a)symmetric tensors almost surely under the noiseless case (with high probability for a bounded noise) using $O(\log(\log \frac{1}{\epsilon}))$ steps of tensor subspace iterations. Our s-ASI method introduces a Slice-Based Initialization that runs $O(1/\log(\frac{\lambda_r}{\lambda_{r+1}}))$ steps of matrix subspace iterations, where $\lambda_r$ denotes the r-th top singular value of the tensor. We are the first to provide a theoretical guarantee on simultaneous orthogonal asymmetric tensor decomposition. Under the noiseless case, we are the first to provide an \emph{almost sure} theoretical guarantee on simultaneous orthogonal tensor decomposition. When tensor is noisy, our algorithm for asymmetric tensor is robust to noise smaller than $\min{O(\frac{(\lambda_r - \lambda_{r+1})\epsilon}{\sqrt{r}}), O(\delta_0\frac{\lambda_r -\lambda_{r+1}}{\sqrt{d}})}$, where $\delta_0$ is a small constant proportional to the probability of bad initializations in the noisy setting.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.