Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning Restricted Boltzmann Machines via Influence Maximization (1805.10262v2)

Published 25 May 2018 in cs.LG, cs.DS, math.PR, and stat.ML

Abstract: Graphical models are a rich language for describing high-dimensional distributions in terms of their dependence structure. While there are algorithms with provable guarantees for learning undirected graphical models in a variety of settings, there has been much less progress in the important scenario when there are latent variables. Here we study Restricted Boltzmann Machines (or RBMs), which are a popular model with wide-ranging applications in dimensionality reduction, collaborative filtering, topic modeling, feature extraction and deep learning. The main message of our paper is a strong dichotomy in the feasibility of learning RBMs, depending on the nature of the interactions between variables: ferromagnetic models can be learned efficiently, while general models cannot. In particular, we give a simple greedy algorithm based on influence maximization to learn ferromagnetic RBMs with bounded degree. In fact, we learn a description of the distribution on the observed variables as a Markov Random Field. Our analysis is based on tools from mathematical physics that were developed to show the concavity of magnetization. Our algorithm extends straighforwardly to general ferromagnetic Ising models with latent variables. Conversely, we show that even for a contant number of latent variables with constant degree, without ferromagneticity the problem is as hard as sparse parity with noise. This hardness result is based on a sharp and surprising characterization of the representational power of bounded degree RBMs: the distribution on their observed variables can simulate any bounded order MRF. This result is of independent interest since RBMs are the building blocks of deep belief networks.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.