Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Residual Networks with a Fully Connected Recon-struction Layer for Single Image Super-Resolution (1805.10143v2)

Published 24 May 2018 in cs.CV

Abstract: Recently, deep neural networks have achieved impressive performance in terms of both reconstruction accuracy and efficiency for single image super-resolution (SISR). However, the network model of these methods is a fully convolutional neural network, which is limit to exploit the differentiated contextual information over the global region of the input image because of the weight sharing in convolution height and width extent. In this paper, we discuss a new SISR architecture where features are extracted in the low-resolution (LR) space, and then we use a fully connected layer which learns an array of differentiated upsampling weights to reconstruct the desired high-resolution (HR) image from the final obtained LR features. By doing so, we effectively exploit the differentiated contextual information over the whole input image region, whilst maintaining the low computational complexity for the overall SR operations. In addition, we introduce an edge difference constraint into our loss function to preserve edges and texture structures. Extensive experiments validate that our SISR method outperforms the existing state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube