Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Analyzing high-dimensional time-series data using kernel transfer operator eigenfunctions (1805.10118v1)

Published 16 May 2018 in stat.ML, cs.LG, and math.OC

Abstract: Kernel transfer operators, which can be regarded as approximations of transfer operators such as the Perron-Frobenius or Koopman operator in reproducing kernel Hilbert spaces, are defined in terms of covariance and cross-covariance operators and have been shown to be closely related to the conditional mean embedding framework developed by the machine learning community. The goal of this paper is to show how the dominant eigenfunctions of these operators in combination with gradient-based optimization techniques can be used to detect long-lived coherent patterns in high-dimensional time-series data. The results will be illustrated using video data and a fluid flow example.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.