Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Underwater Fish Species Classification using Convolutional Neural Network and Deep Learning (1805.10106v1)

Published 25 May 2018 in cs.CV

Abstract: The target of this paper is to recommend a way for Automated classification of Fish species. A high accuracy fish classification is required for greater understanding of fish behavior in Ichthyology and by marine biologists. Maintaining a ledger of the number of fishes per species and marking the endangered species in large and small water bodies is required by concerned institutions. Majority of available methods focus on classification of fishes outside of water because underwater classification poses challenges such as background noises, distortion of images, the presence of other water bodies in images, image quality and occlusion. This method uses a novel technique based on Convolutional Neural Networks, Deep Learning and Image Processing to achieve an accuracy of 96.29%. This method ensures considerably discrimination accuracy improvements than the previously proposed methods.

Citations (125)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.