Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Graph Translation (1805.09980v2)

Published 25 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Inspired by the tremendous success of deep generative models on generating continuous data like image and audio, in the most recent year, few deep graph generative models have been proposed to generate discrete data such as graphs. They are typically unconditioned generative models which has no control on modes of the graphs being generated. Differently, in this paper, we are interested in a new problem named \emph{Deep Graph Translation}: given an input graph, we want to infer a target graph based on their underlying (both global and local) translation mapping. Graph translation could be highly desirable in many applications such as disaster management and rare event forecasting, where the rare and abnormal graph patterns (e.g., traffic congestions and terrorism events) will be inferred prior to their occurrence even without historical data on the abnormal patterns for this graph (e.g., a road network or human contact network). To achieve this, we propose a novel Graph-Translation-Generative Adversarial Networks (GT-GAN) which will generate a graph translator from input to target graphs. GT-GAN consists of a graph translator where we propose new graph convolution and deconvolution layers to learn the global and local translation mapping. A new conditional graph discriminator has also been proposed to classify target graphs by conditioning on input graphs. Extensive experiments on multiple synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed GT-GAN.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.