Papers
Topics
Authors
Recent
2000 character limit reached

Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication (1805.09969v1)

Published 25 May 2018 in stat.ML and cs.LG

Abstract: Recently, the decentralized optimization problem is attracting growing attention. Most existing methods are deterministic with high per-iteration cost and have a convergence rate quadratically depending on the problem condition number. Besides, the dense communication is necessary to ensure the convergence even if the dataset is sparse. In this paper, we generalize the decentralized optimization problem to a monotone operator root finding problem, and propose a stochastic algorithm named DSBA that (i) converges geometrically with a rate linearly depending on the problem condition number, and (ii) can be implemented using sparse communication only. Additionally, DSBA handles learning problems like AUC-maximization which cannot be tackled efficiently in the decentralized setting. Experiments on convex minimization and AUC-maximization validate the efficiency of our method.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.